Computer Number System



Computer Number System



Number system: 

           A set of values used to represent different quantities is known as Number System. For example, a number system can be used to represent the number of students in a class or number of viewers watching a certain TV program etc. The digital computer represents all kinds of data and information in binary numbers. It includes audio, graphics, video, text and numbers. The total number of digits used in a number system is called its base or radix.


Types of Number System:

            Generally number system can be divided into two types.They are:
1.   Non-positional Number System, and
2.   Positional Number system.

Non-Positional Number System:
          
 In early days, Human beings counted on fingers. when ten fingers were not adequate, stones, pebles, or sticks were used to indicate values. This mathod of counting uses an additive approach or the  Non-positional Number System.In This system, we have symbols, such as :-

                         For 1,।। For 2,।।। For 4,।।।। For 4,।।।।। For 5 etc.


Positional Number System
            

 In a positional Number System, there are only a few symbols, called digits, and these symbols represent different values, depending on the position, they occupy in the number. The value of each digit in such a number is determined by three considerations. They are:

1.   The digit,

2.   The position of the digit in the number, and

3.   The base of Number System (where base is defined as the total number of digits available in the number system).

Different Number System:
                 There have four different Number Systems. One of them is used in our day to day life and another three is used as the Computer Number System. The four different Number System are given below:

01
Decimal Number System
Base: 10, Digits Used …0 to 9
02
Binary Number System
Base: 2, Digits Used…0,1
03
Octal Number System
Base: 8, Digits Used…0 to 7
04
Hexadecimal Number System
Base:16, Digits Used…0 to 9,Latters Used A to F.










1-16 Numbers 

Decimal
Binary
Octal
Hexadecimal

0
0
0
0

01
1
1
1

02
10
2
2

03
11
3
3

04
100
4
4

05
101
5
5

06
110
6
6
07
111
7
7
08
1000
10
8

09
1001
11
9

10
1010
12
A

11
1011
13
B

12
1100
14
C

13
1101
15
D

14
1110
16
E

15
1111
17
F

16
10000
20
10





Way of Converting Number System decimal from another base

01.Binary To Decimal

                    Example 1: 110012=X10  what is the Value of ‘X’ in here?

   
            That means, 110012=2510
            Hence, X=25

  Example 2:   101012=X10, Here X=?
   
   This Example may more Helpful to you because it is created by step by step and which is:-

Step 1: Determine the position value of each digits

Step 2: Multiply the obtained column values by the digits in the
 Corresponding columns.


      Step 3: Sum the products calculated in step-2. The total is the equivalent  in Decimal.



                 That means, 101012=2110
                      Hence, X=21.


Binary to Octal 

               
            Example 1:  0100111112=X8, Here ‘X’=?

                 Step 1:  010 011 111

                 Step 2:  
      0102=28

                                             0112=38

                                             1112=78

                         That means, 0100111112=2378

                            Hence, X8=237

  Binary to Hexadecimal
                        


                          Example 1:    110100112=X16, Here ’X’=?

          
           Step 1: 1101   0011

           
           Step 2:

                     
                       11012=D16  

                     
                       00112=316

          
            Step 3: Count it from up to down=D3

                     
                        That means, 110100112=D316

                                     
                            Hence, X16=D3
 




Octal to Binary

                  Example  1: 5628=X2, Here ‘X’=?

               Step 1:

                      58=1012

                        68=1102

                      28=102
     
           Step 2: Count it from up to down   = 101 110 010 

(Note: if any have less than 3 digits you should have fulfilled it by set up zero/0 beside its left side. At this site 28=0102)

                   That means, 5628=1011100102

                    Hence, X2= 101110010
                 



Octal to Decimal

                
                    Example 1:   47068=X10, Here ‘X’ =?




                    That means, 47068=250210
                    
                   Hence, X10= 2502



Octal to Hexadecimal



                 Example 1: 47068=X16, Here X=?

Step 1: Convert these Octal Numbers to Binary…
  
                        48=1002
                      
                        78=1112
                         
                             08=02
                
                        68=1102


 Count it from up to down  47068=1001110001102

(Note: if any have less than 3 digits you should have fulfilled it by set up zero/0 beside its left side. At this side 08=0002)

Step 2: Convert These Binary Numbers to Hexadecimal.


            1001  1100  01102
                  
            10012=916

            11002=A16

            0110=616

        Count it from Up to Down= 9A616

  
                 That means, 47068=9A616
   
                    Hence, X=9A616


Hexadecimal to Binary
  



Example 1:  2AB16=X2, Here X=?





Step 1: 2AB16

                  216=00102

                  A16=10102

                  B16=10112

Step 2: Count it from up to down = 0010101010112

That means, 2AB16= 0010101010112

Hence, X= 0010101010112

(Note: According to Binary from Hexadecimal if any have less than 4 digits you should have fulfilled it by set up zero/0 beside its left side. At this side 216=00102)


Hexadecimal to Octal



                Example 1: ABC16=X8, Here X=?

Step 1: Convert these numbers from Hexadecimal to Binary

              ABC

               A16=10102

               B16=10112

               C16=11002

 Count it from Up to Down= 1010101111002

Step 2: Convert These Binary number to Octal

                 101  010  111 100

                 1012=58

                 0102=28

                 1112=78

                 1002=48

    Count it from Up to Down= 52748

    That means, ABC16=52748

     Hence, X=52748
 

 

Hexadecimal  to Decimal



                        Example 1: 2AB16=X10, Here X=?



              That means, 2AB16=52910

             Hence X=52910




Decimal to Binary
        
                      Example 1: 21510=X2, Here X=?

Step 1: Divide this decimal number by the weight of ‘X’ if any have Extra,show it right side and if have not then you should show zero/0.

 




Step 2: Count it from down to Up= 10101112

That means, 21510=10101112

Hence, X=10101112



Decimal to Octal

                  Example 1: 19810=X8, Here X=?

Step 1: Divide this Decimal number by the weight of ‘X’ if any have Extra,  

show it right side and if have not then you should show zero/0.



  Step 2: Count it from down to Up= 3068

  That means, 19810=3068

   Hence, X=3068




Decimal to Hexadecimal

                Example 1: 70310=X16, Here X=?

Step 1: Divide this Decimal number by the weight of ‘X’ if any have Extra, 

show it right side and if have not then you should show zero/0.





Step 2: Count it from down to Up=2BF16

That means, 70310=2BF16

Hence, X=2BF16
From Self: Here may have some mistake. Please don’t mind if here have some mistake and help me to solve those mistake. If hare have any mistake please notice me by your valuable comments on the comments box or mail me…

Parvej.isdu@gmail.com
 

The End







 

মন্তব্যসমূহ

এই ব্লগটি থেকে জনপ্রিয় পোস্টগুলি

Write a letter to your friends inviting him to your sister’s marriage ceremony

বাংলা বানানে ‘ই-কার‘ এবং ‘ঈ-কার’ এর নিয়ম

বাংলায় মধ্য-অ এর উচ্চারণ